Index theorem on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">/</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> orbifolds

نویسندگان

چکیده

We investigate chiral zero modes and winding numbers at fixed points on ${T}^{2}/{\mathbb{Z}}_{N}$ orbifolds. It is shown that the Atiyah-Singer index theorem for leads to a formula ${n}_{+}\ensuremath{-}{n}_{\ensuremath{-}}=\phantom{\rule{0ex}{0ex}}(\ensuremath{-}{V}_{+}+{V}_{\ensuremath{-}})/2N$, where ${n}_{\ifmmode\pm\else\textpm\fi{}}$ are of $\ifmmode\pm\else\textpm\fi{}$ ${V}_{\ifmmode\pm\else\textpm\fi{}}$ sums ${T}^{2}/{\mathbb{Z}}_{N}$. This complementary our zero-mode counting magnetized orbifolds with nonzero flux background $M\ensuremath{\ne}0$, consistently substituting $M=0$ ${n}_{+}\ensuremath{-}{n}_{\ensuremath{-}}=(2M\ensuremath{-}{V}_{+}+{V}_{\ensuremath{-}})/2N$.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Algebraic Index Theorem for Orbifolds

Using the concept of a twisted trace density on a cyclic groupoid, a trace is constructed on a formal deformation quantization of a symplectic orbifold. An algebraic index theorem for orbifolds follows as a consequence of a local Riemann–Roch theorem for such densities. In the case of a reduced orbifold, this proves a conjecture by Fedosov, Schulze, and Tarkhanov. Finally, it is shown how the K...

متن کامل

Twisted Index Theory on Good Orbifolds, Ii: Fractional Quantum Numbers

This paper uses techniques in noncommutative geometry as developed by Alain Connes [Co2], in order to study the twisted higher index theory of elliptic operators on orbifold covering spaces of compact good orbifolds, which are invariant under a projective action of the orbifold fundamental group, continuing our earlier work [MM]. We also compute the range of the higher cyclic traces on K-theory...

متن کامل

Twisted Index Theory on Good Orbifolds, I: Noncommutative Bloch Theory

We study the twisted index theory of elliptic operators on orbifold covering spaces of compact good orbifolds, which are invariant under a projective action of the orbifold fundamental group. We apply these results to obtain qualitative results on real and complex hyperbolic spaces in 2 and 4 dimensions, related to generalizations of the Bethe-Sommerfeld conjecture and the Ten Martini Problem, ...

متن کامل

Notes on the Atiyah-Singer Index Theorem

This is arguably one of the deepest and most beautiful results in modern geometry, and in my view is a must know for any geometer/topologist. It has to do with elliptic partial differential operators on a compact manifold, namely those operators P with the property that dim ker P, dim coker P < ∞. In general these integers are very difficult to compute without some very precise information abou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2021

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevd.103.025009