Index theorem on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">/</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> orbifolds
نویسندگان
چکیده
We investigate chiral zero modes and winding numbers at fixed points on ${T}^{2}/{\mathbb{Z}}_{N}$ orbifolds. It is shown that the Atiyah-Singer index theorem for leads to a formula ${n}_{+}\ensuremath{-}{n}_{\ensuremath{-}}=\phantom{\rule{0ex}{0ex}}(\ensuremath{-}{V}_{+}+{V}_{\ensuremath{-}})/2N$, where ${n}_{\ifmmode\pm\else\textpm\fi{}}$ are of $\ifmmode\pm\else\textpm\fi{}$ ${V}_{\ifmmode\pm\else\textpm\fi{}}$ sums ${T}^{2}/{\mathbb{Z}}_{N}$. This complementary our zero-mode counting magnetized orbifolds with nonzero flux background $M\ensuremath{\ne}0$, consistently substituting $M=0$ ${n}_{+}\ensuremath{-}{n}_{\ensuremath{-}}=(2M\ensuremath{-}{V}_{+}+{V}_{\ensuremath{-}})/2N$.
منابع مشابه
An Algebraic Index Theorem for Orbifolds
Using the concept of a twisted trace density on a cyclic groupoid, a trace is constructed on a formal deformation quantization of a symplectic orbifold. An algebraic index theorem for orbifolds follows as a consequence of a local Riemann–Roch theorem for such densities. In the case of a reduced orbifold, this proves a conjecture by Fedosov, Schulze, and Tarkhanov. Finally, it is shown how the K...
متن کاملTwisted Index Theory on Good Orbifolds, Ii: Fractional Quantum Numbers
This paper uses techniques in noncommutative geometry as developed by Alain Connes [Co2], in order to study the twisted higher index theory of elliptic operators on orbifold covering spaces of compact good orbifolds, which are invariant under a projective action of the orbifold fundamental group, continuing our earlier work [MM]. We also compute the range of the higher cyclic traces on K-theory...
متن کاملTwisted Index Theory on Good Orbifolds, I: Noncommutative Bloch Theory
We study the twisted index theory of elliptic operators on orbifold covering spaces of compact good orbifolds, which are invariant under a projective action of the orbifold fundamental group. We apply these results to obtain qualitative results on real and complex hyperbolic spaces in 2 and 4 dimensions, related to generalizations of the Bethe-Sommerfeld conjecture and the Ten Martini Problem, ...
متن کاملNotes on the Atiyah-Singer Index Theorem
This is arguably one of the deepest and most beautiful results in modern geometry, and in my view is a must know for any geometer/topologist. It has to do with elliptic partial differential operators on a compact manifold, namely those operators P with the property that dim ker P, dim coker P < ∞. In general these integers are very difficult to compute without some very precise information abou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review
سال: 2021
ISSN: ['0556-2813', '1538-4497', '1089-490X']
DOI: https://doi.org/10.1103/physrevd.103.025009